翻訳と辞書
Words near each other
・ Euler's laws of motion
・ Euler's pump and turbine equation
・ Euler's rotation theorem
・ Euler's sum of powers conjecture
・ Euler's theorem
・ Euler's theorem (differential geometry)
・ Euler's theorem in geometry
・ Euler's three-body problem
・ Euler's totient function
・ Eulerian matroid
・ Eulerian number
・ Eulerian path
・ Eulerian poset
・ Euler–Bernoulli beam theory
・ Euler–Fokker genus
Euler–Heisenberg Lagrangian
・ Euler–Jacobi pseudoprime
・ Euler–Lagrange equation
・ Euler–Lotka equation
・ Euler–Maclaurin formula
・ Euler–Maruyama method
・ Euler–Mascheroni constant
・ Euler–Poisson–Darboux equation
・ Euler–Rodrigues formula
・ Euler–Tricomi equation
・ Euless Junior Stars
・ Euless, Texas
・ Euleucinodes
・ Eulgem
・ Eulia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Euler–Heisenberg Lagrangian : ウィキペディア英語版
Euler–Heisenberg Lagrangian

In physics, the Euler–Heisenberg Lagrangian describes the non-linear dynamics of electromagnetic fields in vacuum. It was first obtained by Werner Heisenberg and Hans Heinrich Euler〔W. Heisenberg and H. Euler, ''Folgerungen aus der Diracschen Theorie des Positrons'' Z. Phys. 98, 714 (1936).〕 in 1936. By treating the vacuum as a medium, it predicts rates of QED light interaction processes.
== Physics ==
It takes into account vacuum polarization to one loop, and is valid for electromagnetic fields that change slowly compared to the inverse electron mass:
:\mathcal =-\mathcal -\frac^\fracs\right)\left(+ i\mathcal\right)}\right)} + i\mathcal\right)}\right)}\mathcal-\frac(es)^\mathcal - 1\right )
Here m is the electron mass, e the electron charge, \mathcal=\frac\left(\mathbf^2 - \mathbf^2\right), and \mathcal=\mathbf\cdot\mathbf.
In the weak field limit, this becomes: \mathcal = \frac\left(\mathbf^-\mathbf^\right)+\frac}\left(- \mathbf^2\right)^ + 7 \left(\mathbf\cdot\mathbf\right)^\right )
It describes photon-photon scattering in QED; Karplus and Neuman calculated the full amplitude,〔R. Karplus and M. Neuman, “The Scattering of Light by Light”, Phys. Rev. 83, 776 (1951).〕 which is very small and has not been seen.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Euler–Heisenberg Lagrangian」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.